首页> 外文OA文献 >A multilevel variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem
【2h】

A multilevel variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem

机译:用于实际车辆路线和驾驶员调度问题的多级可变邻域搜索启发式算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The world's second largest producer of pork, Danish Crown, also provides a fresh meat supply logistics system within Denmark. This is used by the majority of supermarkets in Denmark. This article addresses an integrated vehicle routing and driver scheduling problem arising at Danish Crown in their fresh meat supply logistics system. The problem consists of a 1‐week planning horizon, heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among other things, predefined workdays, fixed starting time, maximum weekly working duration, and a break rule. The objective is to minimize the total delivery cost that is a weighted sum of two kinds of delivery costs. A multilevel variable neighborhood search heuristic is proposed for the problem. In a preprocessing step, the problem size is reduced through an aggregation procedure. Thereafter, the aggregated weekly planning problem is decomposed into daily planning problems, each of which is solved by a variable neighborhood search. Finally, the solution of the aggregated problem is expanded to that of the original problem. The method is implemented and tested on real‐life data consisting of up to 2,000 orders per week. Computational results show that the aggregation procedure and the decomposition strategy are very effective in solving this large scale problem, and our solutions are superior to the industrial solutions given the constraints considered in this work.
机译:世界第二大猪肉生产国丹麦皇冠公司(Danish Crown)也在丹麦提供新鲜的肉类供应物流系统。丹麦的大多数超市都使用这种方式。本文解决了丹麦皇冠在其鲜肉供应物流系统中出现的综合车辆路线和驾驶员调度问题。问题包括为期1周的规划范围,异构车辆以及具有预定义工作规定的驾驶员。这些法规除其他事项外,还包括预定义的工作日,固定的开始时间,每周的最长工作时间以及休息时间规则。目的是最小化总交付成本,该总交付成本是两种交付成本的加权总和。针对该问题提出了一种多级变量邻域搜索启发式算法。在预处理步骤中,通过聚合过程减小了问题的大小。之后,将汇总的每周计划问题分解为每日计划问题,通过可变邻域搜索解决每个问题。最后,将汇总问题的解决方案扩展到原始问题的解决方案。该方法已在包含多达每周2,000个订单的实际数据上实施和测试。计算结果表明,聚集程序和分解策略在解决此大规模问题方面非常有效,考虑到本文中的约束条件,我们的解决方案优于工业解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号